Publications
[2018-Vol.15-Issue 5]High Precision Data-driven Force Control of Compact Elastic Module for a Lower Extremity Augmentation Device
Post: 2018-09-26 09:39  View:1979

            Journal of Bionic Engineering

September 2018, Volume 15, Issue 5, pp 805–819

Likun Wang, Chaofeng Chen, Zhengyang Li, Wei DongEmail author,Zhijiang Du, Yi Shen, Guangyu Zhao

1.State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China

2.School of Astronautics, Harbin Institute of Technology, Harbin, China

3.Weapon Equipment Research Institute, China Ordnance Industries Group, Beijing, China

Abstract

For human assistance device, the particular properties are usually focused on high precision, compliant interaction, large torque generation and compactness of the mechanical system. To realize the high performance of lower extremity augmentation device, in this paper, we introduce a novel control methodology for compact elastic module. Based on the previous work, the elastic module consists of two parts, i.e., the proximal interaction module and the distal control module. To improve the compactness of the exoskeleton, we only employ the distal control module to achieve both purposes of precision force control and human intention recognition with physical human-machine interaction. In addition, a novel control methodology, so-called high precision data-driven force control with disturbance observer is adopted in this paper. To assess our proposed control methodology, we compare our novel force control with several other control methodologies on the lower extremity augmentation single leg exoskeleton system. The experiment shows a satisfying result and promising application feasibility of the proposed control methodology.

Keywords

series elastic actuator   Human-Machine Interaction (HMI)   force control   model prediction control   exoskeleton   bioinspired 

Full text is available at : https://link.springer.com/article/10.1007/s42235-018-0068-y

Address: C508 Dingxin Building, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
Copyright © 2024 International Society of Bionic Engineering All Rights Reserved
吉ICP备11002416号-1