[2019-Vol.16-Issue 5] A Neural-network-based Approach to Study the Energy-optimal Hovering Wing Kinematics of a Bionic Hawkmoth Model
Time: 2019-11-06 14:08  Click:188

Journal of Bionic Engineering

September 2019, Volume 16, Issue 5, pp 904–915| Cite as

Anh Tuan Nguyen,Ngoc Doan Tran,Thanh Trung Vu,Thanh Dong Pham,Quoc Tru Vu,Jae-Hung Han,

1.Faculty of Aerospace Engineering,Le Quy Don Technical University,Hanoi,Vietnam

2.Office of International CooperationLe Quy Don Technical University,Hanoi,Vietnam

3.Department of Aerospace Engineering,Korea Advanced Institute of Science and Technology,Daejeon,Republic of Korea


This paper presents the application of an artificial neural network to develop an approach to determine and study the energy-optimal wing kinematics of a hovering bionic hawkmoth model. A three-layered artificial neural network is used for the rapid prediction of the unsteady aerodynamic force acting on the wings and the required power. When this artificial network is integrated into genetic and simplex algorithms, the running time of the optimization process is reduced considerably. The validity of this new approach is confirmed in a comparison with a conventional method using an aerodynamic model based on an extended unsteady vortex-lattice method for a sinusoidal wing kinematics problem. When studying the obtained results, it is found that actual hawkmoths do not hover under an energyoptimal condition. Instead, by tilting the stroke plane and lowering the wing positions, they can compromise and expend some energy to enhance their maneuverability and the stability of their flight.


optimal hovering wing kinematics artificial neural network insect flight genetic algorithm unsteady vortex-lattice method bionics 

Full text is available at :


Home| News| Research Progress| Events & Meetings| Resources| Membership| Contact Privacy Policy Terms of use

Address: 1201 Administrative Building, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China

Copyright © 2020 International Society of Bionic Engineering All Rights Reserved