Research Progress
Bioinspired materials enable new health-care options
Post: 2014-11-07 13:56  View:814

Of particular interest is the current trend toward the production of biofunctional materials that are able to interact with light, thereby enabling applications in therapy, biosensing, and bioimaging.

 

 

Structures and materials that replicate complex yet efficient arrangements that have evolved in nature over millennia have potential for applications in healthcare. - SPIE, the international society for optics and photonics

 

New applications of structures and materials that replicate complex yet efficient arrangements that have evolved in nature over millennia are featured in a special section on biomimetic and bioinspired materials for applications in biophotonics in the October issue of the Journal of Biomedical Optics. The journal is published by SPIE, the international society for optics and photonics, in the SPIE Digital Library. Several of the peer-reviewed articles are accessible via open access.

"Biomimetic and bioinspired materials present an emerging field in the areas of biomedicine, bioengineering, and biological sciences," write the special sections guest editors Bahman Anvari (University of California, Riverside), Pablo del Pino (CIC biomaGUNE, Bioengineered Particles Lab), Vikas Kundra (University of Texas M.D. Anderson Cancer Center), and Wolfgang Parak (Philipps Universit鋞 Marburg) in their guest editorial.

Of particular interest is the current trend toward the production of biofunctional materials that are able to interact with light, thereby enabling applications in therapy, biosensing, and bioimaging, the editors note. The aim of the special section is to present some of the current state-of-the-art research activities on the use of such materials in relation to the field of biophotonics.

The open access papers include the following topics:

"High temperature heat source generation with quasi-continuous wave semiconductor lasers at power levels of 6 W for medical use" by Takahiro Fujimoto (Clinic F, Tokai University, and Keio University), et al. The technique has applications in laser surgery, including for herniated disk repair with extremely shortened patient recovery time.


"Analytical strategies based on quantum dots for heavy metal ions detection" by Margarita Vquez-Gonzez (University of Santiago de Compostela and Philipps University of Marburg) and Carolina Carrillo-Carrion (Philipps University of Marburg). The paper comments on sensing strategies using quantum dots to assess heavy metal contamination, a major concern to human health because these substances are toxic and retained by the ecological system.


"Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer" by Ali Maawy (University of California, San Diego), et al. Their results demonstrate enhanced selective tumor labeling by dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.
"Tailoring the interplay between electromagnetic fields and nanomaterials toward applications in life sciences: a review" by Pablo del Pino (CIC BiomaGUNE, Bioengineered Particles Lab). The paper provides an overview of the most relevant parameters and promising applications of electromagnetic-active nanoparticles for applications in life science, with a view toward tailoring the interaction of nanoparticles with electromagnetic fields.

 

Other papers concern quantitative evaluation and visualization of size effect on cellular uptake of gold nanoparticles by multiphoton imaging-UV/Vis spectroscopic analysis, and Europium-quantum dot nanobioconjugates as luminescent probes for time-gated biosensing.

Lihong Wang of Washington University in St. Louis is the journals editor-in-chief.

The Journal of Biomedical Optics is published in print and digitally in the SPIE Digital Library, which contains nearly 400,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year. Abstracts are freely searchable, and an increasing number of full journal articles are published with open access.

SPIE is the international society for optics and photonics, a not-for-profit organization founded in 1955 to advance light-based technologies. The Society serves nearly 256,000 constituents from approximately 155 countries, offering conferences, continuing education, books, journals, and a digital library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided more than $3.2 million in support of education and outreach programs in 2013.

The above story is based on materials by Biomimicry News .  
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Address: C508 Dingxin Building, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
Copyright © 2024 International Society of Bionic Engineering All Rights Reserved
吉ICP备11002416号-1