The COVID-19 pandemic is a unique challenge that has impacted many members of the ISBE family. We would like to express our concern and support for all the members of the ISBE community, our staff,…
Considering COVID-19 pandemic in the world, the organizing committee of the IWBE2020 has decided to postpone the workshop originally scheduled at June 10-12, 2020. The final time of the workshop w…
Home > content
Research Progress
Deep3DFly: the deep-learning way to design fly-like robots
Post: 2019-10-14 18:06  View:539

 “Just think about what a fly can do,” says Professor Pavan Ramdya, whose lab at EPFL’s Brain Mind Institute, with the lab of Professor Pascal Fua in EPFL’s Institute for Computer Science, led the study (eLife"DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila"). “A fly can climb across terrain that a wheeled robot would not be able to.”

Flies aren’t exactly endearing to humans. We rightly associate them with less-than-appetizing experiences in our daily lives. But there is an unexpected path to redemption: Robots. It turns out that flies have some features and abilities that can inform a new design for robotic systems.

“Unlike most vertebrates, flies can climb nearly any terrain,” says Ramdya. “They can stick to walls and ceilings because they have adhesive pads and claws on the tips of their legs. This allows them to basically go anywhere. That's interesting also because if you can rest on any surface, you can manage your energy expenditure by waiting for the right moment to act.”
It was this vision of extracting the principles that govern fly behavior to inform the design of robots that drove the development of DeepFly3D, a motion-capture system for the fly Drosophila melanogaster, a model organism that is nearly ubiquitously used across biology.
In Ramdya’s experimental setup, a fly walks on top of a tiny floating ball – like a miniature treadmill – while seven cameras record its every movement. The fly’s top side is glued onto an unmovable stage so that it always stays in place while walking on the ball. Nevertheless, the fly “believes” that it is moving freely.
The collected camera images are then processed by DeepFly3D, a deep-learning software developed by Semih Günel, a PhD student working with both Ramdya’s and Fua’s labs. “This is a fine example of where an interdisciplinary collaboration was necessary and transformative,” says Ramdya. “By leveraging computer science and neuroscience, we’ve tackled a long-standing challenge.”
What’s special about DeepFly3D is that is can infer the 3D pose of the fly – or even other animals – meaning that it can automatically predict and make behavioral measurements at unprecedented resolution for a variety of biological applications. The software doesn’t need to be calibrated manually and it uses camera images to automatically detect and correct any errors it makes in its calculations of the fly’s pose. Finally, it also uses active learning to improve its own performance.
DeepFly3D opens up a way to efficiently and accurately model the movements, poses, and joint angles of a fruit fly in three dimensions. This may inspire a standard way to automatically model 3D pose in other organisms as well.
“The fly, as a model organism, balances tractability and complexity very well,” says Ramdya. “If we learn how it does what it does, we can have important impact on robotics and medicine and, perhaps most importantly, we can gain these insights in a relatively short period of time.”
Source: Ecole Polytechnique Federale de Lausanne (EPFL)


Address: C508 Dingxin Building, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
Copyright © 2020 International Society of Bionic Engineering All Rights Reserved