Publications
[2022-Vol.19-Issue 4]Control Evaluation of Antagonistic Series Elastic Actuation for a Robotic Endoscope Joint
Post: 2022-09-15 09:06  View:467

Journal of Bionic Engineering (2022) 19:965–974 https://doi.org/10.1007/s42235-022-00180-6

Control Evaluation of Antagonistic Series Elastic Actuation for a Robotic Endoscope Joint 

Lorin Fasel1  · Nicolas Gerig1  · Philippe C. Cattin2  · Georg Rauter1 

1 BIROMED-Lab, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland 

2 CIAN, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland

Abstract Haptic feedback is typically missing during telemanipulation of surgical robots in minimally invasive surgeries, i.e., surgeons cannot feel the interaction forces between the instruments and tissues. Instead, surgeons have to solely rely on visual feedback, which increases complexity of guiding the instruments and poses the safety threat of unperceivable contacts outside the feld of view. We propose a novel series elastic actuation design for articulated robotic endoscopes to overcome these limitations and evaluate an according device with one joint. Similar to the actuation of human fngers, the joint is driven by antagonistic tendons. Springs are integrated in the transmission between the tendons and the motors outside of the endoscope shaft. We estimated the joint angle and thereby the endoscope shape, measured spring defection, estimated tendon forces from that defection, and implemented force control for the endoscope joint. Zero torque control and impedance control were evaluated under application of both a continuous force and an impact force to the endoscope tip. The springs reduced impact forces at the tip of the endoscope through their inherent compliance. At the same time, feeding back the estimated force resulted in a stable tendon force control and a tunable endoscope joint control: Zero torque control efectively reduced the external forces, while the endoscope joint showed the expected stifness in impedance control. These results show that antagonistic series elastic actuation is a promising concept for endoscope joint actuation and that it can lead towards safer robot–tissue interactions in surgical robotics. 

Keywords Minimally invasive surgery · RAMIS · Robot-assisted surgery · Haptic feedback · Force control · Tendon-driven robotics

1663204004017.png

Address: C508 Dingxin Building, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
Copyright © 2023 International Society of Bionic Engineering All Rights Reserved
吉ICP备11002416号-1